Maximal outline of a gap competition
Many thanks to
Bob Henderson (USA)
for entering this
problem.
Start with a set of pentominoes :
Look for a shape
containing all pentominoes once, where every pentomino must border at least
one other. In our example there is a hole, of which the outline has a total
length of 74 units (the red line).
Try to find a solution with a maximal outline.
When the outlines form two solutions have the same length, the one with the
smallest area wins.
For solving the problem Exel can be used. We have a
file
containing the pentominoes.