Records Competition 44
Naam
Land

Van sommige deelnemers kregen we een bewijs dat 88 de maximale omtrek was.
Helmut Postl mailde:"Proof: Each pentomino
has a perimeter of 12, except the P which has 10. So the maximal perimeter of
the 12 red pieces is 12×12 = 144. Since they are connected to each other by at
least twelve times a single side, this means that each piece has 12 – 2 = 10
open sides left. So the constructed red ring has at most 120 open sides. This is
the sum of the inner and the outer perimeter. So in order to maximize the outer
perimeter, we have to minimize the inner perimeter. In other words, we have to
find a shape of area 60 which has minimal perimeter. It is easy to see that this
minimum is 32, and it can be achieved in several ways, for example a
6×10-rectangle. This means that the outer perimeter is at most 120 – 32 = 88."
Dit zijn onze deelnemers :
(voor hun oplossing te zien, klik op hun naam)
Wouter Boogert
Nederland
Marco en Lorenzo Carelli
Italië
Joe DeVincentis
USA
Bob
Henderson
USA
Peter Jeuken
Nederland
USA
Polen
Oostenrijk
Edo Timmermans
Nederland
Aad van de Wetering
Nederland
R. Wainwright
USA
Leuk idee voor een volgende wedstrijd.
Bij vaststelling van fouten of onvolledigheid, mail
naar: